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Abstract: This paper presents a method of accurately determining the displacement
of tracer particles between two images using recursive correlation.  The local
correlation value is iteratively arrived at through successive approximations of local
displacement using increasingly smaller regions of determination.  By starting with
a large search area and iteratively narrowing the search restricting the search after
each iteration based on the resulting calculation, very high-resolution PIV
processing can be achieved.  Spurious vectors are eliminated and accuracy and
processing speed is maintained by correlating images in compressed (sparse array)
format using second-order spatial correlation.  The methodology of this unique
image analysis method is presented along with a discussion of its limitations and
applicability.
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NOMENCLATURE
ΦΦ Correlation function
∆∆ Correlation search length [pixels]
∆∆t Time between image exposures [sec.]
∆∆i,∆∆j Difference in pixel image [pixels]
∇∇ Gradient operator
γγ Image compression ratiov
v Flow velocity [m/s]

v ′v  Unsteady flow velocity component [m/s]
d Particle image diameter [pixels]
f Spatial frequency [1/m]
I Pixel intensity
i,j Image coordinates [pixels]
m,n Data array indices
M Image magnification [m/pixels]
M, N Interrogation image diameter [pixels]
x,y Pixel image coordinates

1. INTRODUCTION

The probability of obtaining a statistically meaningful measure of local flow velocity using
correlation increases as the number of tracer particles and pixels used to image tracer
particles increases.  Correlations based on small data sets are unlikely to yield meaningful
result in all but ideal circumstances.  If a large data set is used for an individual correlation,
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however, spatial resolution is severely limited and the ability to resolve large regions of flow
is restricted by the resolution of current imaging technology.  To overcome this, investigators
are forced to correlate relatively small data sets and rely on image characteristics to insure a
high probability of uniqueness for the resulting correlation value.  This limitation can be
circumvented by using a recursive correlation algorithm.  That is, the local displacement can
be approximated by correlating a fairly large data set before reducing the data set and
recorrelating the region limiting the search for the maximum correlation value based on the
previous correlation.  Unfortunately, any error in approximating the local-correlation value in
this manner propagates resulting in unacceptable errors in the results.  Furthermore, the
multiple correlations of subregions required to obtain any single vector greatly slows
processing.

Background

Particle image velocimetry is inherently limited by the resolution of current imaging
technology and the statistical nature by which PIV images are processed.  Specifically, it is
limited by the nature of the determination of tracer particle movement by local-correlation.
Westerweel, in a recent publication [1998], demonstrates that the minimum pixel number
required to describe a single tracer particle is 2px x 2px.  Fewer than this and the ability to
resolve sub-pixel displacement begins to breakdown.  Such a limitation, however, has more
to do with the nature of current imaging technology than it does with an inherent physical
limitation of PIV.  As optical diffraction limits the minimum size of the projected image of a
tracer particle, it follows that the limit to which any giving discreet imaging system can
resolve a volume of flow is limited by the size and spacing of the pixel sensors rather than the
total resolution of the array.  There is, however, a direct relationship between sensor area and
the sensitivity to light.  Consequently, there exist a practical limit to the volume that can be
imaged.  Interestingly, this limit has little to do with the absolute spatial-resolution with
which the flow within this volume can be resolved.  That is, it is the diffraction size of the
optics that limits the spatial-resolution and not the total number of pixels in the image array.

Optical diffraction limitations are inherent to all particle tracking velocimetry techniques and
not just PIV.  However, PIV by the statistical way in which particle displacements are
determined introduces another, somewhat artificial limitation.  As Keenan and Adrian [1987]
demonstrated, PIV requires roughly ten tracer particle images per interrogation region to
accurately resolve local particle displacement using traditional correlation.  This limitation is
artificial in that a single pair of particle images contains enough information to resolve the
local flow velocity.  It is only that the displacement of a single pair of particle images can not
be resolved through correlation except in the most ideal of circumstances, when only one
particle image exists within an interrogation region, that limits spatial resolution.  When a
flow is heavily seeded, however, it becomes impossible to match pairs of particle images.
Consequently, when attempting to optimize accuracy and spatial-resolution, a careful balance
exists.  If the seeding density is low, particle tracking technology can be used to follow
individual particles but the seeding density itself severely limits spatial resolution as few
particles exist within the interrogation region.  At high seeding densities, correlation is
required to resolve displacement and thus, spatial-resolution is limited by the number of
particle image pairs needed to insure a high probability of uniqueness of the solution.  This
limitation can be overcome by coupling particle-tracking technology with PIV local-
correlation processing as first presented by Keenan and Adrian [1995].   Such a coupling
allows relatively high seeding densities, higher than can be tolerated by particle tracking
alone while maintaining the accuracy of particle tracking.  This type of analyses, however,
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fails to resolve images to the limits of available information.  Although an improvement, the
nature of such a coupling is still limited by the same conditions that limit particle tracking on
a larger scale.  It, however, circumvents the first order difficulties of high seeding densities at
the course scales typical of PIV processing.  At extremely high seeding densities, particle
overlap, agglomeration, diffraction, and distortion of light, prevent the use of particle tracking
even at the smallest scales.  It becomes impossible to resolve any single particle image in the
flow.  Yet, it is at these seeding densities where the greatest possible information content
exists within an imaged flow, a condition where the addition of more particles to a flow
reduces the probability of obtaining a valid correlation from a finite region rather than
increases it.  Ideally, any super-resolution processing algorithm should be able to handle both,
very heavily seeded flows as well as very sparse flows with equal robustness and speed.  This
paper presents such an algorithm, a super-resolution algorithm based entirely on local-
correlation.
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Figure 1: Super-Resolution processing through recursive correlation is
carried out by correlating a standard size region then splitting the region
not smaller subregions before re-correlating using the initial correlation
as a predictor of the subsequent correlation.  This recursive correlation
process can be carried out down to the individual particle size.

2. METHODOLOGY

Recursive correlation is, in principle, relatively simple.  Correlation is carried out in the same
way traditional correlation processing is carried out.  That is, a subregion is selected, the
region is correlated, and the peak correlation is determined.  Unlike traditional correlation,
the resulting value is stored and the subregion is broken into smaller regions that are, in turn,
correlated to yield the velocity over a reduced region of determination.  The previous
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correlation is used as an estimate to limit the search for the current correlation (see Fig. 1).  In
this way, the probability of locking onto the correct displacement is maintained at a high level
despite the small data sets.  This iterative process can be carried out down to the dimensions
of individual particle images.

The inherent difficulty with recursive correlation and the reason it has not been widely used
is that all errors propagate down to the smallest scale.  That is, if an error in the initial
correlation occurs, this error limits the search for subsequent correlations to regions in which
the correct particle displacement may not exist.  Consequently, the peak correlation found in
subsequent correlations may not represent the actual displacement of the particles in the
image.  Furthermore, any single vector can be the result of ten or more individual
correlations.  This can slow processing to a level where the technique becomes impractical.
In order for recursive correlation to be viable, a very fast highly robust processing algorithm
is needed.

3. RESOLUTION ENHANCEMENT

The spatial resolution that can be obtained from PIV images is inherently limited by the
statistical nature of correlation based processing.  In dividing images into subregions, a
careful balance must be maintained between the statistical number of tracer particle images
within the subregions and the relative displacement of particle images between exposures
from one area of a region to another.  If a subregion is too small, too few tracer particle
images exist within the region and a statistically meaningful result for averaged flow velocity
can not be obtained through correlation.  If the subregion is too large, however, the
displacement of tracer particles between exposures from one area of the region to another due
to local flow gradients can be greater than the image diameter of the tracer particles.  This
condition results in a decrease in signal-to-noise ratio due to displacements in individual
particle correlation peaks too large to add to the net correlation signal [Keane, Adrian, 1992;
Hart, 1996].     Consequently, there exists an optimum correlation window size that depends
on the local flow conditions and seeding density.  The optimum window size is rarely
constant from one region of a flow to another.  Thus, traditional PIV processing in which the
interrogation window size is fixed, results in the majority of processing being carried out with
less than optimum interrogation windows.

The highest spatial resolution that can be obtained by tracking tracer particles in a flow is of
the order of the diameter of a single tracer particle image.  To achieve this level of spatial
resolution through correlation, interrogation windows with a size equal to the tracer particle
image diameter must be used.   Such window sizes can not generate statistically meaningful
results unless it is known a priori that the local displacement is within a few pixels.  A
correlation based on such data results in a peak value representing the optimum match of the
shape of individual particle intensity profiles rather than a statistical spatial match of distinct
randomly space points.  This is the bases for super-resolution PIV processing through local-
correlation.  The interrogation size and the search distance are iteratively reduced until the
smallest meaningful scale is reached.  Each iteration is based on the results of the previous
calculation.  Thus, a priori information exists enabling statistically meaningful results despite
inordinately small interrogation window sizes.

There is, however, a limit to the spatial resolution that can be achieved by recursive
correlation that does not necessarily represent the seeding density of the flow nor the
characteristics of the way in which the flow was imaged.  This limit is the result of the
maximum velocity gradient that can exist to resolve local tracer particle displacement from a
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finite interrogation region through correlation.  If an initial correlation window size is
selected so that there exists a statistically meaningful number of tracer particle images,
roughly ten (see Keane and Adrian [1992]), then there exists a corresponding maximum local
velocity gradient that can be resolved.  This limit in velocity gradient is approximately

tN

d
vij ∆

≅∇
max

v  or a total displacement from one area of an interrogation region to another of

roughly one particle image diameter [Hart, 1998].  Because each iteration of recursive
correlation processing relies on the outcome of the previous correlation, the maximum
velocity gradient that can be resolved depends on the average velocity gradient of the
previous solution.  Consequently, if a flow is sparsely seeded such that the initial correlation
window size must be relatively large to contain ten tracer particle images, improvement in
spatial resolution through recursive correlation may be futile.  Each subsequent correlation
increases the spatial frequency of the velocity that can be resolved but does not effect the
ability to resolve the magnitude of the unsteady velocity component at lower frequencies.
The maximum unsteady velocity component that can be resolved depends on the spatial
frequency, f, of the velocity component and the size of the correlation window used to resolve

it; 
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interrogation plane such that ijijij vvv ′+= vvv
 and n here defines the interrogation window size.

Because the unsteady velocity component at low spatial frequencies is limited by the largest
interrogation size which is equal to the initial correlation window size, N, the magnitude of
the unsteady velocity component that can be resolved by recursive correlation at all spatial
frequencies is

πt
d

v ij ∆
=′ m

max

v
(1)

This is inversely proportional to the accuracy with which particle displacement can be
determined.  Consequently, a tradeoff must be made between accuracy, spatial resolution, and
the ability to resolve unsteady velocity.

4. COMPUTATIONAL INTENSITY

Consider the direct correlation function defined by the equation;
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The computational cost of processing this function can be defined by the number of
individual pixel comparisons plus the number of array interrogations needed to determine the
peak correlation from the resulting correlation table.  Thus, the computational cost of
processing an NxN interrogation region is ( )2224 ∆+∆N  where ∆ is the magnitude of the distance
searched for the peak correlation in terms of pixels (A ±32px search implies ∆=32).  The
computational cost of using the direct correlation function for super-resolution PIV through

recursive correlation is thus equal to ...
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be tolerated in the original correlation (α≅d).  As N becomes large, this approximately equals
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Because α is typically much less than ∆, the computational difference between super-
resolution processing and standard processing is negligible.
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Figure 2: Compression based correlation.  The images are compressed and
each pixel’s intensity is stored into a sparse array.  The images are then
correlated by comparing individual entries within the array(s).  Correlation
rates far greater than FFT based correlation can be realized with this
algorithm.

If a compression based processing algorithm is utilized [Hart, 1998] where the total number
of pixels in the data set is reduced by a factor γ before correlation, super-resolution
processing can be carried out far faster than it takes to process the same image set using an
FFT based algorithm at normal resolution (see Fig. 2).  Since the additional resolution is
gained at little computation cost, the compression ratio can be reduced between each iteration
such that there is no compression during the final correlations and thus, no data loss.
Consider the case in which the number of pixels after compression is maintained from one
iteration to the next such that the compression ratio is dropped by a factor of four after each
iteration.  The net computational cost then equals the correlation computational cost,
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cost associated with the search for the peak correlation.  Thus, the net computational cost for
super-resolution cross-correlation processing using sparse array image correlation is
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associated with sparse array correlation of non-recursively processed images.  As an example,
the computational cost for a correlation with N=32px, ∆=16px, α=8px, and an initial
compression ratio of 50:1, is roughly one-fifth that of standard FFT processing even when
correlated down to single particle levels (4x4px).  This is an increase in spatial resolution of
about a hundred.  Thus, super-resolution processing can be carried out at rates higher than
FFT correlation without sacrificing accuracy due to image compression.

5. ERROR CORRECTION

Currently, the most widely used and accepted technique to eliminate correlation errors is to
compare vectors with their neighbors to determine if they are in some statistical or physical
sense inconsistent.  This technique, analyzed in detail by Westerweel (1994), is based on the
assumption that vectors resulting from correlation errors are far removed in magnitude and/or
direction from neighboring vectors.  It assumes that the resolution of PIV data is high enough
and the flow features benign enough that apparent discontinuities in the flow will not present
themselves and be eliminated.  It is a method of detecting errors and not a method of
resolving tracer particle displacement. Detailed correlation information is discarded before
interrogation.  Consequently, errors can only be eliminated from the results and replaced by
interpolated values.  Furthermore, this error correction method addresses only the most
obvious of correlation errors and does not address the more subtle problems that severely
limit sub-pixel accuracy and resolution.  Although extremely useful, post-interrogation error
correction is not ideal.

Both errors resulting from insufficient data and errors caused by correlation anomalies can be
eliminated during processing, regardless of the method of correlation, simply by multiplying
the correlation table generated during processing by the correlation table generated from one
or more adjacent regions;
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This correlation error correction technique is illustrated in Fig.3.  Here, the correlation table
calculated during processing of one region (Fig. 3a) is multiplied, element-by-element, by the
correlation table calculated from an adjacent region that overlaps the first region by fifty-
percent (Fig. 3b).  Neither of the correlation tables in this example (Fig. 3a or 3b) has a
discernable peak representing tracer particle displacement.  The resulting correlation table
(Fig. 3c), however, has very few correlation anomalies and has a very prominent correlation
peak in the lower right hand corner.
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(A)(A)
(B)(B)

(C)

Figure 3: Elimination of correlation anomalies by multiplying the correlation
tables from adjacent regions.  Correlation values that do not appear in both tables
are eliminated allowing tracer particle displacement to be resolved.

Correlation error correction is effectively a correlation of two or more correlation tables.  It is
not an averaging technique.  Any correlation value that does not appear in the combined
correlation tables is eliminated from the resulting table.  As the probability of exactly the
same anomalies appearing in different regions is very small, correlation anomalies, regardless
of their source, are eliminated from the data.  Conversely, correlation values that are identical
in location and magnitude in the combined tables are amplified.  Thus, even if tracer particle
displacement is not discernable in any of the combined correlation tables, multiplied together,
the peak is either easily resolved or it becomes evident that at least one of the combined
tables does not contain sufficient information to resolve particle displacement.

Correlation error correction is not equivalent to correlating a larger region equal to the sum of
the combined regions.  Such a correlation would not eliminate correlation anomalies.  It
would, assuming no local velocity gradient, only strengthen the correlation peak representing
the average particle displacement in the combined regions.  This is not true of correlation
error correction.  The correlation peak found in the table resulting from correlation error
correction is weighted to the displacement of the tracer particles within the overlap of the
combined regions.  Information within the overlapping regions identically effect the values in
all of the correlation tables equally and are, therefore, not removed during processing.
Particle displacements in regions outside the overlap influence the calculated displacement
but to an extent that depends on the similarity in displacement.  Thus, rather than a reduction
in resolution, there is an improvement that depends on the size of the overlap and the gradient
of the velocity relative to the size of the sample volume.

=

X
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When second-order correlation is combined with recursive super-resolution processing,
significant improvements in spatial resolution can be realized as illustrated in the example
shown in Fig. 4.

Image Parameters:Image Parameters:
• 486x512 pixel image
        (10cmx10cm region)
• 64x64 px initial inter. size
• 4x4 px final inter. size
• 50% overlap
• 1 particle/ 4x4 region
• 1mm pulsed laser sheet

Flow Parameters:Flow Parameters:
• Re=35,000
• Swirl Number, Ω=2.4
• 1m/s mean velocity

Figure 4: 60,000 vectors calculated using recursive correlation from a 486x512
image of a swirling flow (Re=35,000, Ω=2.4) undergoing sudden expansion.  Each
vector on average represents a single tracer particle in the flow and is the result of
as many as five sub-window correlations.  These results are processed at a rate of
over 1,000 vectors/sec using sparse array image correlation with correlation error
correction.

6. CONCLUSIONS

The spatial resolution of particle image velocimetry, PIV, can be significantly improved
through recursive correlation.  By breaking PIV images into subregions, correlating each
subregion before reducing the size of the subwindows and re-correlating using the results of
the previous correlation to narrow the search for subsequent correlations, improvements in
spatial resolution by factors greater than a hundred can be realized.  The computational cost
of such processing is minimal.  Through the use of compression based correlation, super-
resolution PIV processing can be done faster than spectral, FFT, based processing at typical
resolutions.  Furthermore, because the computational costs associated with compression
based correlation are greatly dependent on the number of pixels being correlated, the majority
of computation is done during the initial subregion correlation.  Subsequent correlations can
be performed at much reduced compression ratios improving subpixel accuracy without
sacrificing computational speed.  Traditionally, recursive algorithms of this type are subject
to sever difficulties as any error that occurs in determining particle displacement can then be
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propagated to the smallest scale.  Through a unique second-order correlation algorithm, such
errors are adverted and the resulting processed data is nearly free of spurious results.

The advantage that a purely correlation based super-resolution algorithm has over hybrid
correlation/particle tracking algorithms is that they do not require that individual particles be
distinguishable.  Consequently, correlation based super-resolution PIV processing can be
performed on very heavily seeded images resolving local velocities at spatial resolutions
nearing the dimensions of individual particles.
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